Estensione di anelli

Da Teknopedia, l'enciclopedia libera.
Vai alla navigazione Vai alla ricerca
Niente fonti!
Questa voce o sezione sull'argomento matematica non cita le fonti necessarie o quelle presenti sono insufficienti.

Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento.

In teoria degli anelli, una branca della matematica, un'estensione di anelli è una coppia di anelli (R, S) in cui uno è contenuto nell'altro, cioè . Tale situazione si indicherà con R/S e si dirà che R è un'estensione di anelli di S.[1].

A partire da un'estensione di anelli R/S e da un sottoinsieme B di R, è possibile costruire il più piccolo sottoanello di R contenente sia S che B: tale anello si indica con S[B] e si può dimostrare che coincide con l'insieme delle possibili combinazioni di elementi di mediante le operazioni di anello (somma e prodotto) di R.

Se esiste un insieme finito tale che l'estensione R/S si dice finitamente generata.

Particolari tipi di estensioni di anelli sono le estensioni di campi. Si può provare che se R/K è un'estensione di anelli in cui K è un campo ed R=K[A] per qualche insieme A di elementi algebrici su K, allora anche R è un campo, precisamente il campo K(A) che si ottiene aggiungendo gli elementi di A a K, e dunque R/K è un'estensione di campi.

  1. ^ Occorre precisare che in questo caso non si sta compiendo alcuna operazione di passaggio al quoziente, come invece si fa per la creazione ad esempio dell'anello quoziente.

Voci correlate

[modifica | modifica wikitesto]

Collegamenti esterni

[modifica | modifica wikitesto]
Controllo di autoritàLCCN (ENsh85114119 · J9U (ENHE987007538869405171
  Portale Matematica: accedi alle voci di Teknopedia che trattano di matematica