Nel calcolo differenzialevettoriale, il gradiente è un operatore che si applica ad una funzione a valori reali (un campo scalare) e dà come risultato una funzione vettoriale. Il gradiente di una funzione è un vettore che ha come componenti le derivate parziali della funzione - vale solo se si utilizzano coordinate cartesiane ortonormali. In generale, il gradiente di una funzione , denotato con (il simbolo si legge nabla), è definito in ciascun punto dalla seguente relazione: per un qualunque vettore , il prodotto scalare dà il valore della derivata direzionale di rispetto a .
In fisica, il gradiente di una grandezza scalare si usa per descrivere come quest'ultima vari in funzione dei suoi parametri. Ad esempio, si parla di gradiente termico per esprimere la variazione della temperatura lungo una direzione, o di gradiente di pressione per esprimere la variazione della pressione lungo una data direzione.
Il vettore gradiente di una funzione scalare punta secondo la direzione di massima crescita della funzione stessa, ed è quindi perpendicolare ai suoi Insiemi di livello.
Solitamente si definisce l'operatore gradiente per funzioni scalari di tre variabili , ma la definizione può essere estesa a funzioni in uno spazio euclideo di dimensione arbitraria. Il gradiente di è un campo vettoriale che in ogni punto dello spazio consente di calcolare la derivata direzionale di nella direzione di un generico vettore tramite il prodotto scalare tra e il gradiente della funzione nel punto.
Dal momento che l'operatore gradiente associa a un punto dello spazio un vettore, il gradiente di una funzione differenziabile scalare su è un campo vettoriale che associa a ogni il vettore .
Un campo gradiente è conservativo, cioè non si ha dissipazione di energia (il lavoro compiuto lungo una linea chiusa è sempre nullo). Infatti, se si calcola l'integrale di linea lungo una qualunque curva che sia chiusa, cioè tale che si ottiene:
Inoltre, le linee di flusso di un campo gradiente associato a una funzione scalare sono ovunque perpendicolari (o ortogonali) agli insiemi di livello di , cioè alle ipersuperfici date dall'equazione cartesiana al variare di . Infatti, i vettori tangenti alle linee di flusso sono dati da : si consideri allora un generico vettore tangente a una superficie di livello in un punto , e sia una curva tale che , che giace interamente su una superficie di livello e tale che il vettore tangente alla curva in è . Dato che è su una superficie di livello allora , cioè derivando si ha .
I vettori e sono allora ortogonali e l'affermazione da verificare segue per l'arbitrarietà di e . La derivata direzionale di una funzione in un dato punto di rappresenta poi il valore numerico dato dal limite del rapporto fra la variazione che essa subisce a partire dal punto per uno spostamento lungo la direzione e verso individuata dal versore rispetto a cui si deriva e lo spostamento medesimo al tendere a zero di quest'ultimo e risulta perciò positiva se è crescente lungo tale verso a partire da punto considerato, negativa o nulla in caso contrario; d'altra parte la derivata direzionale del gradiente, proprio per il suo legame col prodotto scalare, è massima (e positiva) lungo il versore che lo individua (proprio come il prodotto scalare di un vettore per un versore è massimo e positivo quando il versore ha la direzione e verso del vettore). Il gradiente è dunque normale alle superfici di livello e diretto nel verso dei livelli crescenti; esso risulta irrotazionale anche se non sempre vale il viceversa a meno che l'insieme su cui il campo è definito sia semplicemente connesso.
dove indica il prodotto interno (definito dalla metrica ) tra vettori tangenti la varietà nel punto , mentre è la funzione che a ogni punto associa la derivata direzionale di nella direzione valutata in .
In modo equivalente, data una carta definita su un aperto in a valori in , la funzione è data da:
dove è la j-esima componente di nella carta considerata. Quindi la forma locale del gradiente è:
Generalizzando il caso , il gradiente di una funzione si relaziona con la sua derivata esterna nel seguente modo:
Si tratta di un caso particolare (quello in cui la metrica è quella "piatta" data dal prodotto interno) della seguente definizione. Il gradiente è il campo vettoriale associato alla 1-forma differenziale usando l'isomorfismo musicale:
Il gradiente di una funzione in ogni punto caratterizza la miglior approssimazione lineare di nel punto:
per vicino a , con il gradiente di calcolato in . Tale espressione è equivalente all'espansione in serie di Taylor di una funzione di più variabili in .
La migliore approssimazione lineare a una funzione in è una mappa lineare da in detta differenziale o derivata totale di in , e denotata con . Il gradiente è legato al differenziale dalla relazione:
In coordinate curvilinee ortogonali, quando la metrica è data da , il gradiente di in un punto è il vettore:
dove e con si indica il versore della direzione -esima (con tutti gli elementi nulli tranne l'-esimo che vale 1).
Se il sistema è bidimensionale e le coordinate sono curvilinee qualunque, il gradiente della funzione diventa:
dove , e sono le entrate del tensore metrico . Infatti, siccome il gradiente può essere espresso come (con e da determinare), il differenziale della funzione in tale sistema diventa
.
Risolvendo quindi il sistema
e ricordando che (con angolo tra le due direzioni), risulta dimostrato l'asserto iniziale.