Numero poligonale
In matematica, un numero poligonale è un numero figurato che può essere disposto a raffigurare un poligono regolare.
Introduzione
[modifica | modifica wikitesto]Gli antichi matematici scoprirono che alcuni numeri potevano essere raffigurati in determinati modi quando rappresentati da semi o sassolini. Il numero 10, ad esempio, può formare un triangolo:
ed è quindi un numero triangolare, ma non può formare un quadrato, al contrario del numero 9, che è per l'appunto un numero quadrato (o quadrato perfetto)
Alcuni numeri, come 36, che possono essere rappresentati sia come quadrati che come triangoli, prendono il nome di numeri quadrati triangolari:
In modo analogo sono definiti i numeri pentagonali, esagonali, e, in generale, s-gonali. In questi casi, però, il diagramma che si ottiene non è più altamente compatto, come nei casi di poligoni con tre o quattro lati.
Indicando con l’n-esimo numero s-gonale, si definisce in generale
e qualunque sia s, ovvero il secondo numero della serie dei numeri s-gonali è pari al numero dei vertici (o dei lati) del poligono.
I successivi numeri s-gonali si ottengono prolungando di un punto due lati consecutivi del poligono e aggiungendo poi i restanti lati (tutti della stessa lunghezza) fra questi. Nei seguenti schemi, il passaggio da un numero al successivo, è indicato con pallini rossi.
Numeri triangolari
[modifica | modifica wikitesto]
L’n-esimo numero triangolare T(n) si ottiene sommando fra loro i primi n numeri naturali:
I numeri triangolari possono essere ottenuti in modo ricorsivo:
- per (ricordando che ).
Numeri quadrati
[modifica | modifica wikitesto]
L’n-esimo numero quadrato Q(n) si ottiene sommando fra loro i primi n numeri dispari:
I numeri quadrati possono essere ottenuti in modo ricorsivo:
- per ().
Vale l'identità
ossia ogni quadrato perfetto può essere ottenuto sommando due numeri triangolari consecutivi. L'uguaglianza può essere facilmente dimostrata tramite la formula di Gauss. Lo stesso risultato può essere dedotto dalla figura seguente in cui il quadrato è stato diviso in due triangoli, uno di lato pari a quello del quadrato (contiene la diagonale), e l'altro col lato più corto di uno.
Numeri pentagonali
[modifica | modifica wikitesto]L’n-esimo numero pentagonale si ottiene costruendo un nuovo pentagono partendo dal precedente, aggiungendo un punto a due lati adiacenti e costruendo ex novo gli altri tre lati, e contando tutti i punti, vecchi e nuovi. In pratica si ottiene sommando a i tre nuovi lati di punti per un totale di punti:
Sviluppando all'indietro, sostituendo ogni numero pentagonale in funzione del precedente:
Che è equivalente alla:
Dalla
con semplici passaggi si ottiene:
ossia qualunque numero pentagonale si può esprimere in funzione di numeri triangolari.
Numeri esagonali
[modifica | modifica wikitesto]
Con ragionamenti analoghi a quelli effettuati sopra si ottengono le identità:
Formule generali
[modifica | modifica wikitesto]Se s è il numero di lati di un poligono, la formula per l'n-esimo numero s-gonale si ottiene aggiungendo al precedente numero s-gonale lati lunghi , per un totale di punti, ossia
Si dimostra facilmente che ciò equivale a
Generalizzando le formule ottenute per i numeri pentagonali ed esagonali, si ottengono anche le seguenti identità:
e quindi
Siccome
allora
Tabella dei primi numeri s-gonali
[modifica | modifica wikitesto]Quando possibile, nella tabella, le formule generatrici sono state semplificate.
Nome | Formula | n=1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Triangolare | ½n(n + 1) | 1 | 3 | 6 | 10 | 15 | 21 | 28 | 36 | 45 | 55 | 66 | 78 | 91 |
Quadrato | n2 | 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 | 100 | 121 | 144 | 169 |
Pentagonale | ½n(3n - 1) | 1 | 5 | 12 | 22 | 35 | 51 | 70 | 92 | 117 | 145 | 176 | 210 | 247 |
Esagonale | n(2n - 1) | 1 | 6 | 15 | 28 | 45 | 66 | 91 | 120 | 153 | 190 | 231 | 276 | 325 |
Ettagonale | ½n(5n - 3) | 1 | 7 | 18 | 34 | 55 | 81 | 112 | 148 | 189 | 235 | 286 | 342 | 403 |
Ottagonale | n(3n - 2) | 1 | 8 | 21 | 40 | 65 | 96 | 133 | 176 | 225 | 280 | 341 | 408 | 481 |
Ennagonale | ½n(7n - 5) | 1 | 9 | 24 | 46 | 75 | 111 | 154 | 204 | 261 | 325 | 396 | 474 | 559 |
Decagonale | n(4n - 3) | 1 | 10 | 27 | 52 | 85 | 126 | 175 | 232 | 297 | 370 | 451 | 540 | 637 |
11-gonale | ½n(9n - 7) | 1 | 11 | 30 | 58 | 95 | 141 | 196 | 260 | 333 | 415 | 506 | 606 | 715 |
12-gonale | n(5n - 4) | 1 | 12 | 33 | 64 | 105 | 156 | 217 | 288 | 369 | 460 | 561 | 672 | 793 |
13-gonale | ½n(11n - 9) | 1 | 13 | 36 | 70 | 115 | 171 | 238 | 316 | 405 | 505 | 616 | 738 | 871 |
14-gonale | n(6n - 5) | 1 | 14 | 39 | 76 | 125 | 186 | 259 | 344 | 441 | 550 | 671 | 804 | 949 |
15-gonale | ½n(13n - 11) | 1 | 15 | 42 | 82 | 135 | 201 | 280 | 372 | 477 | 595 | 726 | 870 | 1027 |
16-gonale | n(7n - 6) | 1 | 16 | 45 | 88 | 145 | 216 | 301 | 400 | 513 | 640 | 781 | 936 | 1105 |
17-gonale | ½n(15n - 13) | 1 | 17 | 48 | 94 | 155 | 231 | 322 | 428 | 549 | 685 | 836 | 1002 | 1183 |
18-gonale | n(8n - 7) | 1 | 18 | 51 | 100 | 165 | 246 | 343 | 456 | 585 | 730 | 891 | 1068 | 1261 |
19-gonale | ½n(17n - 15) | 1 | 19 | 54 | 106 | 175 | 261 | 364 | 484 | 621 | 775 | 946 | 1134 | 1339 |
20-gonale | n(9n - 8) | 1 | 20 | 57 | 112 | 185 | 276 | 385 | 512 | 657 | 820 | 1001 | 1200 | 1417 |
21-gonale | ½n(19n - 17) | 1 | 21 | 60 | 118 | 195 | 291 | 406 | 540 | 693 | 865 | 1056 | 1266 | 1495 |
22-gonale | n(10n - 9) | 1 | 22 | 63 | 124 | 205 | 306 | 427 | 568 | 729 | 910 | 1111 | 1332 | 1573 |
23-gonale | ½n(21n - 19) | 1 | 23 | 66 | 130 | 215 | 321 | 448 | 596 | 765 | 955 | 1166 | 1398 | 1651 |
24-gonale | n(11n - 10) | 1 | 24 | 69 | 136 | 225 | 336 | 469 | 624 | 801 | 1000 | 1221 | 1464 | 1729 |
25-gonale | ½n(23n - 21) | 1 | 25 | 72 | 142 | 235 | 351 | 490 | 652 | 837 | 1045 | 1276 | 1530 | 1807 |
26-gonale | n(12n - 11) | 1 | 26 | 75 | 148 | 245 | 366 | 511 | 680 | 873 | 1090 | 1331 | 1596 | 1885 |
27-gonale | ½n(25n - 23) | 1 | 27 | 78 | 154 | 255 | 381 | 532 | 708 | 909 | 1135 | 1386 | 1662 | 1963 |
28-gonale | n(13n - 12) | 1 | 28 | 81 | 160 | 265 | 396 | 553 | 736 | 945 | 1180 | 1441 | 1728 | 2041 |
29-gonale | ½n(27n - 25) | 1 | 29 | 84 | 166 | 275 | 411 | 574 | 764 | 981 | 1225 | 1496 | 1794 | 2119 |
30-gonale | n(14n - 13) | 1 | 30 | 87 | 172 | 285 | 426 | 595 | 792 | 1017 | 1270 | 1551 | 1860 | 2197 |
Formula inversa
[modifica | modifica wikitesto]Per un dato numero -gonale , è possibile trovare mediante la formula:
Bibliografia
[modifica | modifica wikitesto]- I numeri poligonali su MathWorld, su mathworld.wolfram.com.
Voci correlate
[modifica | modifica wikitesto]- Numero figurato
- Numero poligonale centrato
- Numero poligonale centrale
- Numero piramidale
- Numero tetraedrico
- Quadrato perfetto
- Tetraktys
Collegamenti esterni
[modifica | modifica wikitesto]- (EN) polygonal number, su Enciclopedia Britannica, Encyclopædia Britannica, Inc.
- (EN) Eric W. Weisstein, Numero poligonale, su MathWorld, Wolfram Research.
Controllo di autorità | Thesaurus BNCF 37193 · LCCN (EN) sh85093217 · J9U (EN, HE) 987007538748105171 |
---|