Indice
Equazione di Butler-Volmer
In elettrochimica, l'equazione di Butler-Volmer mette in correlazione la corrente elettrica circolante in una cella elettrochimica con il potenziale di cella nel caso in cui le reazioni di elettrodo siano controllate dal processo di trasferimento di carica elettrica agli elettrodi e non dal trasferimento di massa tra le superfici degli elettrodi e il bulk (la parte del solido abbastanza lontana dalle regioni del solido stesso in cui avvengono gli scambi di materia, quantità di moto e calore, da non percepirne gli effetti) dell'elettrolita.
Tale equazione può comunque essere generalizzata al caso in cui il processo avvenga sotto altre tipologie di controllo (ad esempio sotto controllo per trasporto di massa o sotto controllo misto).
L'equazione di Butler-Volmer deve il suo nome ai chimici John Alfred Valentine Butler e Max Volmer.[1]
Processo monostadio
[modifica | modifica wikitesto]Nel caso in cui la reazione di trasferimento di carica coinvolga il trasferimento di un singolo elettrone e avvenga in un singolo stadio, l'equazione di Butler-Volmer si scrive:[2]
o in forma microscopica e più compatta:
oppure:
in cui:
- I è la corrente elettrica circolante nell'elettrodo (A)
- A è l'area della superficie elettrodica attiva (m2)
- i è la densità di corrente, data dal rapporto tra intensità di corrente I e l'area attiva dell'elettrodo A
- i0 è la densità di corrente di scambio (A/m2)
- E è il potenziale di elettrodo (V)
- Eeq è il potenziale di equilibrio (V)
- η è la sovratensione, data dalla differenza tra potenziale di elettrodo E e potenziale di equilibrio Eeq
- n è il numero di elettroni coinvolti nella reazione che avviene all'elettrodo
- e è la carica elementare
- F è la costante di Faraday[3]
- kB è la costante di Boltzmann
- R è la costante dei gas
- T è la temperatura assoluta (K)
- e sono dei coefficienti adimensionali che vengono chiamati rispettivamente "coefficiente di simmetria della barriera anodico" e "coefficiente di simmetria della barriera catodico".
Derivazione dell'equazione di Butler-Volmer
[modifica | modifica wikitesto]La generica reazione redox che avviene in una cella elettrochimica può essere scritta nella forma:
in cui:
- Ox indica le specie ossidate
- Red indica le specie ridotte
- e indica un elettrone (o una mole di elettroni)
- n è il numero di elettroni (o il numero di moli di elettroni) coinvolti nella reazione redox.
Tale reazione redox può essere vista come una reazione di riduzione se letta da sinistra verso destra o come una reazione di ossidazione se letta da destra verso sinistra. In effetti in un sistema elettrochimico avvengono entrambe le reazioni di riduzione e ossidazione, ma ciascuna di esse avviene con diverse velocità di reazione (vRed e vOx) e la velocità di reazione complessiva vnet è data dalla somma delle due semireazioni:[4]
- vnet = vOx - vRed
assumendo che le equazioni cinetiche siano del primo ordine, si ha:
in cui:
- kOx e kRed sono rispettivamente la costante di velocità della reazione di ossidazione e la costante di velocità della reazione di riduzione;
- e sono le concentrazioni in corrispondenza della superficie dell'elettrodo delle specie ossidate e ridotte.
Sfruttando l'equazione di Arrhenius, le costanti di velocità possono essere espresse come:[4]
in cui:
- E è il potenziale di elettrodo
- A è una costante indipendente dal potenziale di elettrodo
- e sono le energie di attivazione (espresse in termini di energia libera di Gibbs) della reazione di riduzione e della reazione di ossidazione; tali energie di attivazione dipendono dal potenziale di elettrodo E
- R è la costante dei gas
- T è la temperatura assoluta.
Nel caso in cui il potenziale di elettrodo E abbia valori abbastanza vicini al potenziale standard di riduzione E0, le energie di attivazione possono essere approssimate a:[4][3]
essendo:[4]
e sono detti rispettivamente "coefficiente di simmetria di barriera anodico" e "coefficiente di simmetria di barriera catodico"; tali coefficienti assumono valori compresi tra 0 e 1, e la loro somma è sempre pari a 1.[5] Vengono chiamati "coefficienti di simmetria" in quanto tanto più tali coefficienti si avvicinano a 0,5, tanto più la barriera di energia associata al processo elettrochimico è simmetrica.[6]
La densità di corrente i per una reazione elettrochimica è data dal prodotto tra la velocità di reazione vnet, la costante di Faraday F e il numero di elettroni n coinvolti nella reazione:[7]
- i = vnet·nF
Sostituendo il valore di vnet con la differenza di vOx e vRed, si ha:
tramite ulteriori sostituzioni si arriva all'espressione:[7]
a questo punto si introduce nell'equazione il potenziale di equilibrio Eeq, che è calcolato dall'equazione di Nernst:[7]
si definisce inoltre la densità di corrente di scambio i0 come:
si ottiene quindi l'espressione:
Introducendo la sovratensione η, si ha infine la seguente forma dell'equazione di Butler-Volmer:[7]
Casi limite
[modifica | modifica wikitesto]Si possono avere due casi limite per l'equazione di Butler-Volmer:
- nel caso in cui E ≈ Eeq (cioè nella regione a bassi valori di sovratensione), l'equazione di Butler-Volmer si riduce alla seguente forma:
- da cui si osserva che per E = Eeq la corrente che attraversa la cella elettrochimica è nulla;
- a elevati valori di sovratensione, l'equazione di Butler-Volmer si riconduce alla legge di Tafel, in particolare:
- per una reazione catodica, dove E << Eeq
- per una reazione anodica, dove E >> Eeq
in cui a e b sono costanti per una data reazione e a temperatura fissata. Tali costanti sono differenti per il processo anodico e per il processo catodico.
Processi multistadio
[modifica | modifica wikitesto]Nel caso più generale in cui si abbia il trasferimento di più elettroni in più stadi, l'equazione di Butler-Volmer rimane formalmente invariata, tranne per il fatto che al posto del coefficiente di simmetria di barriera anodico va inserito il cosiddetto "coefficiente di trasferimento di carica anodico" (per cui il coefficiente di simmetria di barriera è uguale al coefficiente di trasferimento di carica solo nel caso in cui lo stadio cineticamente determinante sia rappresentato dal trasferimento di un singolo elettrone attraverso una sola reazione elementare[8]):
A differenza dei coefficienti di simmetria di barriera, la somma dei coefficienti di trasferimento di carica non è sempre uguale a uno (ma solo nel caso in cui tali coefficienti siano uguali ai coefficienti di simmetria della barriera).
Il coefficiente di trasferimento è pari a:[8]
in cui:
- n è il numero di cariche scambiate globalmente per atto unitario di reazione
- è il numero stechiometrico, ovvero il numero di volte in cui avviene lo stadio cineticamente determinante per atto globale di reazione
- r è il numero di elettroni scambiati durante lo stadio cineticamente determinante
- è il numero di step all'equilibrio prima dello stadio cineticamente determinante
Analogamente, il coefficiente di trasferimento catodico è pari a:[8]
per cui la loro somma non è pari a 1 (come invece avviene per i coefficienti simmetria anodico e catodico), bensì:[8]
Controllo per trasferimento di materia
[modifica | modifica wikitesto]Nel caso di controllo per trasferimento di materia (cioè nel caso in cui lo stadio più lento sia il trasporto delle specie elettroattive dal bulk dell'elettrolita fino al piano di reazione e viceversa), l'equazione Butler–Volmer diventa:[9]
in cui:
- i pedici "OX" e "RED" si riferiscono alle specie elettroattive regenti il cui trasporto di materia rappresenta lo stadio cineticamente determinante del processo;
- è l'attività del reagente in corrispondenza della superficie dell'anodo;
- l'attività del reagente in corrispondenza del bulk dell'anolita;
- è l'attività del reagente in corrispondenza della superficie del catodo;
- l'attività del reagente in corrispondenza del bulk del catolita.
Tale forma dell'equazione di Butler-Volmer si riconduce alla forma dell'equazione sotto controllo per trasferimento di carica quando l'attività in corrispondenza della superficie dell'elettrodo è uguale l'attività nel bulk dell'elettrolita.
Note
[modifica | modifica wikitesto]- ^ (EN) Ashok K. Shukla e T. Prem Kumar, Pillars of Modern Electrochemistry: A Brief History (2008). Archiviato il 20 agosto 2013 in Internet Archive.
- ^ http://lem.ch.unito.it/didattica/infochimica/2006_Fuel_Cells/principi%20generali.html Archiviato il 4 marzo 2016 in Internet Archive. (nel link fornito con α si indica il coefficiente di simmetria catodico, per cui l'equazione è leggermente differente da questa)
- ^ a b Bisogna fare attenzione al fatto che in alcuni testi (ad esempio nello Schmickler, usato in questa voce come fonte) con "F" non si indica la costante di Faraday, che è la carica di una mole di elettroni, bensì la carica complessiva, che è data da "nF".
- ^ a b c d Schmickler, p. 92.
- ^ Schmickler, pp. 92-93.
- ^ Schmickler, pp. 93-94.
- ^ a b c d Schmickler, p. 94.
- ^ a b c d Bockris Vol. 2, pp. 1007-1008.
- ^ Allen Bard and Larry Faulkner, "Electrochemical Methods. Fundamentals and Applications". 2nd edition, John Wiley and Sons, Inc., 2001.
Bibliografia
[modifica | modifica wikitesto]- (EN) Wolfgang Schmickler, Elizabeth Santos, Interfacial Electrochemistry, 2ª ed., Springer, 2010, ISBN 3-642-04936-2.
- Giuseppe Bianchi, Torquato Mussini, Elettrochimica, Elsevier, 1976, ISBN 88-214-0500-1.
- (EN) John O'M. Bockris, Amulya K. N. Reddy, Modern Electrochemistry: An introduction to an interdisciplinary area - Volume 1, Plenum Press, 1977, ISBN 0-306-25001-2.
- (EN) John O'M. Bockris, Amulya K. N. Reddy, Modern Electrochemistry: An introduction to an interdisciplinary area - Volume 2, Plenum Press, 1977, ISBN 0-306-25002-0.
- (EN) Cynthia G. Zoski, Handbook of Electrochemistry, Elsevier Science, 2007, ISBN 978-0-444-51958-0.
Voci correlate
[modifica | modifica wikitesto]- Cinetica elettrochimica
- Legge di Tafel
- Sovratensione (elettrochimica)
- Max Volmer
- John Alfred Valentine Butler
Altri progetti
[modifica | modifica wikitesto]- Wikimedia Commons contiene immagini o altri file su Equazione di Butler-Volmer
Collegamenti esterni
[modifica | modifica wikitesto]- (EN) Butler-Volmer Equation, su Enciclopedia Britannica, Encyclopædia Britannica, Inc.