Indice
Indipendenza stocastica
Nell'ambito del calcolo delle probabilità, l'indipendenza stocastica di due eventi e si ha quando il verificarsi di uno non modifica la probabilità di verificarsi dell'altro, ovvero quando la probabilità condizionata oppure è pari rispettivamente a e
queste due condizioni si possono sintetizzare con la formula
Descrizione
[modifica | modifica wikitesto]In altre parole, dire che due eventi sono indipendenti tra loro significa dire che il fatto di sapere che uno di essi si è verificato non modifica la valutazione di probabilità sul secondo. Per esempio, il fatto di ottenere "1" quando viene lanciato un dado ed il fatto di ottenere ancora un "1" la seconda volta che il dado viene lanciato, sono indipendenti.
Analogamente, quando si afferma che due variabili casuali e definite sullo stesso spazio campionario sono indipendenti si afferma che conoscere qualcosa riguardo al valore di una di esse non apporta alcuna informazione circa il valore dell'altra. Per esempio, il numero che appare sulla faccia superiore di un dado la prima volta che viene lanciato e il numero che appare la seconda volta sono indipendenti. Formalmente, questo si verifica quando per ogni coppia di eventi e risulta
Equivalentemente ciò si verifica se, detta la funzione di ripartizione della variabile congiunta e , le due funzioni di ripartizione marginali, allora per ogni , vale che
Condizioni analoghe si trovano per la funzione di densità di probabilità e la funzione di probabilità, se è rispettivamente una variabile casuale continua o una variabile casuale discreta:
e
Generalizzazioni
[modifica | modifica wikitesto]Nell'ambito della teoria della probabilità, la nozione di indipendenza stocastica può essere generalizzata ampiamente. Sia uno spazio di probabilità, e sia una famiglia arbitraria (finita o non finita) di σ-algebre contenute in : . Esse si dicono indipendenti rispetto a se, per ogni sottoinsieme finito di , e per ogni sottoinsieme , accade:
- .
Questa nozione si riduce alla precedente nel caso in cui la famiglia di σ-algebre sia formata da due soli elementi e , dove, dato un insieme misurabile , è la σ-algebra da esso generata: .
Questa estensione, ampiamente usata nella teoria dei processi stocastici, trova la sua motivazione nel fatto che l'indipendenza stocastica di una famiglia di σ-algebre, non è in generale equivalente all'indipendenza dei suoi elementi a due a due. Ad esempio, dati tre insiemi , sapendo che e , e , e sono indipendenti, non se ne può dedurre che:
Voci correlate
[modifica | modifica wikitesto]- Probabilità
- Probabilità condizionata
- Uso sbagliato della statistica
- Mark Kac
- Hugo Steinhaus
- Paradosso del compleanno
Altri progetti
[modifica | modifica wikitesto]- Wikiversità contiene risorse sull'indipendenza stocastica
- Wikimedia Commons contiene immagini o altri file sull'indipendenza stocastica
Collegamenti esterni
[modifica | modifica wikitesto]- (EN) independent event, su Enciclopedia Britannica, Encyclopædia Britannica, Inc.
- (EN) Eric W. Weisstein, Indipendenza stocastica, su MathWorld, Wolfram Research.