Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
teknopedia

teknopedia

teknopedia

teknopedia

teknopedia

teknopedia
teknopedia
teknopedia
teknopedia
teknopedia
teknopedia
  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
  1. Weltenzyklopädie
  2. Particle Swarm Optimization - Teknopedia
Particle Swarm Optimization - Teknopedia
Niente fonti!
Questa voce o sezione sull'argomento programmazione non cita le fonti necessarie o quelle presenti sono insufficienti.

Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti.
Esempio di funzionamento del PSO

In informatica, l'ottimizzazione con sciami di particelle, nota anche come particle swarm optimization (PSO), è un algoritmo di ottimizzazione e appartiene ad una particolare classe di algoritmi utilizzati in diversi campi, tra cui l'intelligenza artificiale. È un metodo euristico di ricerca ed ottimizzazione, ispirato al movimento degli sciami.

Ad ogni iterazione, l'algoritmo identifica un nuovo "candidato all'ottimo" nello spazio di ricerca, sulla base di una specifica misura di qualità (fitness). La PSO rientra nell'egida delle meta-euristiche, poiché non fa alcuna assunzione sul problema e consente l'esplorazione di larghissimi spazi di soluzioni. Per come è strutturato l'algoritmo, tuttavia, non c'è alcuna garanzia che la soluzione ottima verrà mai trovata.

L'algoritmo non fa uso di un gradiente nel corso dell'ottimizzazione, dunque non è richiesta la differenziabilità del problema da analizzare, cosa che invece avviene nei metodi di ottimizzazione tradizionali come la discesa del gradiente. Per questa ragione, può essere utilizzata con successo in problemi di ottimizzazione irregolari, rumorosi, variabili nel tempo, eccetera.

La PSO ottimizza un problema utilizzando una popolazione di soluzioni candidate (dette "particelle", le particle) che si spostano nello spazio di ricerca sulla base di semplici formule, che tengono in considerazione la loro velocità di spostamento corrente, le loro conoscenze dello spazio di fitness (ovvero la migliore soluzione che hanno esplorato finora) e la conoscenza condivisa (cioè la miglior soluzione generale identificata). L'algoritmo consente di pesare queste tre componenti (inerzia, cognitiva e sociale) e utilizza dei piccoli jittering casuali per minimizzare la possibilità di intrappolamento in minimi locali.

La PSO è generalmente attribuita a Kennedy, Eberhart and Shi,[1] che la introdussero nello studio dei comportamenti sociali simulati, studiando il movimento degli stormi di uccelli o dei banchi di pesci. L'algoritmo fu semplificato quando si comprese che poteva effettuare ottimizzazione.

Anche l'algoritmo del PSO può essere implementato per risolvere dei problemi di ottimizzazione multiobiettivo, dove il fronte di Pareto aiuta a scegliere le soluzioni ottimali del problema.[2][3]

Note

[modifica | modifica wikitesto]
  1. ^ Kennedy, J.; Eberhart, R. (1995). "Particle Swarm Optimization". Proceedings of IEEE International Conference on Neural Networks. IV. pp. 1942–1948.
  2. ^ Coello Coello, Salazar Lechuga, "MOPSO: A Proposal for Multiple Objective Particle Swarm Optimization", Congress on Evolutionary Computation (CEC'2002), pp. 1051--1056
  3. ^ Parsopoulos K., Vrahatis M., "Particle swarm optimization method in multiobjective problems", Proceedings of the ACM Symposium on Applied Computing (SAC), 2002, pp. 603–607

Voci correlate

[modifica | modifica wikitesto]
  • Algoritmo genetico

Altri progetti

[modifica | modifica wikitesto]

Altri progetti

  • Wikimedia Commons
  • Collabora a Wikimedia Commons Wikimedia Commons contiene immagini o altri file su Particle Swarm Optimization
V · D · M
Genetica
Materiale geneticoNucleotidi · Basi azotate · Acidi nucleici (DNA · RNA) · Cromosomi · Genoma
Concetti chiaveGene · Codice genetico · Allele · Locus · Ereditarietà genetica · Diversità genetica · Mutazione genetica · Variabilità genetica
Campi della geneticaGenetica formale · Genetica molecolare · Genetica delle popolazioni · Genomica · Genetica umana · Epigenetica
GenetistiGregor Mendel · Thomas Hunt Morgan · Ronald Fisher · Frederick Griffith · Erwin Chargaff · Barbara McClintock · James Watson · Francis Crick · Rosalind Franklin · Alec Jeffreys
V · D · M
Apprendimento automatico
ProblemiTeoria dell'apprendimento statistico · Classificazione · Regressione · Classificazione a singola classe · Ranking · Regole di associazione · Apprendimento non supervisionato · Apprendimento semi-supervisionato · Apprendimento supervisionato · Apprendimento auto-supervisionato · Apprendimento per rinforzo · Apprendimento profondo · Apprendimento online · Apprendimento incrementale · Apprendimento trasduttivo

Apprendimento non supervisionatoClustering · Clustering gerarchico · K-means · Algoritmo EM · DBSCAN · Mean shift · Rete generativa avversaria (cGAN · VAE-GAN · cycleGAN)
Apprendimento supervisionatoAlbero di decisione · Foresta casuale · Conditional random field CRF · Modello di Markov nascosto · Algoritmo k-nearest neighbors (k-NN) · Ragionamento basato su casi (CBR) · Classificatore bayesiano · Rete neurale artificiale · Regressione lineare · Regressione logistica · Modello grafico · Rete bayesiana · Macchine a vettori di supporto (SVM) · Processo gaussiano · Modello ensemble · Boosting · Bagging · Stacking · Voting · Cascading · Error correcting output code (ECOC)
Apprendimento per rinforzoQ-learning · SARSA · TD
Riduzione della dimensionalitàAnalisi fattoriale · Analisi della correlazione canonica (CCA) · Analisi delle componenti indipendenti (ICA) · Analisi discriminante lineare (LDA) · Analisi delle componenti principali (PCA) · Selezione delle caratteristiche · Estrazione di caratteristiche · t-distributed stochastic neighbor embedding (t-SNE)
Reti neurali artificialiPercettrone · Percettrone basato su kernel · Rete neurale a funzioni base radiali (RBF net) · Rete neurale feed-forward · Rete di Hopfield · Percettrone multistrato · Rete neurale ricorrente (LSTM) · Macchina di Boltzmann ristretta · Mappa auto-organizzata · Rete neurale convoluzionale · Rete neurale a ritardo · Rete neurale spiking · Rete neurale grafica · Trasformatore
SoftwareKeras · Microsoft Cognitive Toolkit · Scikit-learn · TensorFlow · Theano · PyTorch · Weka
AltroAlgoritmo genetico · Particle Swarm Optimization · Caratteristica · Compromesso bias-varianza · Minimizzazione del rischio empirico
  Portale Biologia
  Portale Informatica
  Portale Ingegneria
  Portale Matematica
  Portale Statistica
Estratto da "https://it.wikipedia.org/w/index.php?title=Particle_Swarm_Optimization&oldid=128032432"

  • Indonesia
  • English
  • Français
  • 日本語
  • Deutsch
  • Italiano
  • Español
  • Русский
  • فارسی
  • Polski
  • 中文
  • Nederlands
  • Português
  • العربية
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022