Il Kappa di Cohen è un coefficiente statistico che rappresenta il grado di accuratezza e affidabilità in una classificazione statistica; è un indice di concordanza che tiene conto della probabilità di concordanza casuale; l'indice calcolato in base al rapporto tra l'accordo in eccesso rispetto alla probabilità di concordanza casuale e l'eccesso massimo ottenibile.
Questo valore deve il suo nome allo scienziato Jacob Cohen.
Attraverso la matrice di confusione è possibile valutare questo parametro:
dove è data dalla somma della prima diagonale della matrice divisa per il totale dei giudizi e rappresenta la percentuale di giudizio, di fatto, concorde tra i giudici.
Mentre è il prodotto dei totali positivi sommato a quelli negativi, il tutto diviso per il quadrato del totale dei giudizi , e rappresenta la probabilità di accordo casualmente. Infatti è la percentuale di valutazioni positive "reali" (o assegnate da uno dei due controllori) e lo stesso in modo analogo per , ed ; la probabilità di accordo positivo (casuale o statistico) tra i due è quindi così come quella di accordo negativo è , da cui si ottiene la formula per la percentuale di accordo casuale, sommando le due probabilità.
Se , allora la statistica rappresenta il caso ottimo. Infatti .
Esistono diversi "gradi di concordanza", in base ai quali possiamo definire se Kappa di Cohen è scarso o ottimo:
- se k assume valori inferiori a 0, allora non c'è concordanza;
- se k assume valori compresi tra 0-0,4, allora la concordanza è scarsa;
- se k assume valori compresi tra 0,4-0,6, allora la concordanza è discreta;
- se k assume valori compresi tra 0,6-0,8, la concordanza è buona;
- se k assume valori compresi tra 0,8-1, la concordanza è ottima.
Valori reali | ||||
---|---|---|---|---|
p | n | totale | ||
Valori predetti |
p' | Veri positivi |
Falsi positivi |
P' |
n' | Falsi negativi |
Veri negativi |
N' | |
totale | P | N |
Controllo di autorità | GND (DE) 7522376-4 |
---|