Discussione:Problemi di Hilbert

Da Teknopedia, l'enciclopedia libera.
Vai alla navigazione Vai alla ricerca

La lista è mooooolto approssimativa, il 7 problema, ad esempio è risolto solo in pochi casi particolari, il caso con β irrazionale qualunque è aperto, il decimo è irresolubile ([1]) e via così. Guardare qui, qui e qui per ulteriori approfondimenti

BW 07:57, Ago 12, 2004 (UTC)
Ottimo grazie..metterò tutto insieme :) Avendo preso da en:wiki, non ho ancora guardato, cercherò di fare del mio meglio (e alla fine richiamerò un matematico a controllare, mi sa :) ) Ciao e grazie, Matteo (scrivimi) 08:04, Ago 12, 2004 (UTC)

Chiedo a chi ne sa più di me di integrare o correggere le parti già in italiano, dato che il problema 4 (ad esempio) mi convince poco, e idem il riassuntino in due parole del teorema di Godel. Sinceramente mi piacerebbe prima o poi fare come su en:wiki, in cui ogni problema ha una lunga pagina a sè..speriamo di arrivarci :) Ciao e grazie, Matteo (scrivimi) 11:03, Ago 12, 2004 (UTC)

2a problema

[modifica wikitesto]

Attualmente il tabello definisce il secondo problema cosi`: "L'insieme degli assiomi dell'aritmetica è consistente?" e l'articolo continua "La risposta al problema 2 è no". Sciocchezza, ovvero una redazione di una sezione non coordinata con le altre sezioni. Cosi` si puo' inferire che l'aritmetica sia inconsistente.

Faro` il cambiamento minimo, cioe` di ridefinire il problema: "Si puo' dimostrare che l'insieme...." Pero` anche la risposta dev'essere rivista, dato che Hilbert non preciso`, nel famoso discorso, come si deve dimostrare tale fatti. Vedi l'articolo inglese, en:Hilbert's problems.

N.B. chi ne vuole discutere e` gentilmente pregago di lasciarmi un messaggio a en:User talk:Trovatore. --Trovatore 19:44, 18 nov 2005 (CET)[rispondi]

nella tabella si dice: soluzione parzialmente accettata, ma questo "parzialmente" non viene spiegato in alcun modo nella sezione relativa. chi è che non accetta la soluzione di Gödel (o, più probabilmente: chi ritiene che il teorema di Gödel non risolva il problema)? giorgian (˙.­˙) 02:18, 6 nov 2007 (CET)[rispondi]
A questo momento non saprei fare dai nomi. Il discorso e` questo: Goedel mostro` che non si puo` dimostrare la coerenza dell'aritmetica, assumendo soltanto gli assiomi dell'aritmetica stessa. Pero` non e` ovvio che fosse questo che Hilbert intendeva. Chi sostiene che il teorema di Goedel risolve il problema deve dare un rendiconto del perche` il teorema di Gentzen non soddisfa gli occorenti posti da Hilbert per una dimostrazione della coerenza dell'aritmetica.
Ho recentemente comprato il libro di Franzén; a casa ci daro' un'occhiata per vedere se lui tratti l'argomento. --Trovatore 05:16, 6 nov 2007 (CET)[rispondi]

Credo che ci sia una piccola incoerenza con il secondo problema, rispetto a quanto riportato in queste altre due pagine: Entscheidungsproblem e Programma_di_Hilbert -- Mk178 (msg)

7° problema

[modifica wikitesto]

Non capisco perché si dica che il teorema di Genfold risolve solo parzialmente il settimo problema, il cui testo è: "dati a algebrico diverso da 0 e da 1 e b irrazionale, il numero ab è sempre trascendente?".

Il teorema dimostra che se b è irrazionale algebrico ab è sempre trascendente. Mi pari basti aggiungere che se b è invece trascendente ab può non esserlo (la wiki inglese propone come esempio a = 3, b = log(2)/log(3), ab = 2).

Dire che il problema rimane aperto perché non si sa se ee o simili sono trascendenti, come si fa nella voce sul Teorema di Gelfond, mi pare non c'entri proprio nulla, perché il problema riguarda potenze con base algebrica, non trascendente.

--Leitfaden (msg) 10:17, 29 mag 2009 (CEST)[rispondi]

Infatti il problema è risolto solo per il caso particolare di b algebrico irrazionale (con a sempre algebrico diverso da 0 e 1). In tutti gli altri casi, ovvero in generale, il problema rimane aperto (quindi anche per il caso di b trascendente). --IndyJr (Tracce nella foresta) 00:20, 15 lug 2022 (CEST)[rispondi]
[@ Leitfaden, IndyJr] Mi sembra ci sia molta confusione nelle voci su questo problema/teorema su it.wiki. Il punto è che il problema come scritto su it.wiki non è quello originale di Hilbert (vedi p. 20) che riguarda solo il caso b irrazionale algebrico e che quindi è stato risolto. Salvo obiezioni procedo a correggere le voci.--Sandro_bt (scrivimi) 22:32, 12 ago 2022 (CEST)[rispondi]
@Sandrobt Certo, per me puoi fare tutte le modifiche che ritieni opportune. --IndyJr (Tracce nella foresta) 22:49, 12 ago 2022 (CEST)[rispondi]
✔ Fatto--Sandro_bt (scrivimi) 14:33, 19 ago 2022 (CEST)[rispondi]

ma che cavolo vuol dire...

[modifica wikitesto]

..."Non esiste un consenso tra matematici se ciò risolva o meno il problema."

la matematica è diventata una specie di opinione in cui ognuno può dire la propria? una frasettina così è inutile: meglio toglierla!

--80.180.27.122 (msg) 15:30, 18 apr 2010 (CEST)[rispondi]

Eppure è così, molti sviluppi della matematica non trovano un consenso concorde fra i vari matematici. E non solo per le congetture, le dimostrazioni condizionali, ma perfino gli assiomi fondamentali sui cui è costruita (vedi per esempio l'assioma della scelta). L'ipotesi del continuo è stata dimostrata come non verificabile né confutabile, ma questo ha risposto alla domanda se esistono infiniti di cardinalità intermedia fra il continuo e gli infiniti numerabili? Il non lo sappiamo per alcuni matematici può essere la risposta definitiva ma per altri può non esserla, forse è solo un limite della matematica che conosciamo al giorno d'oggi. La matematica come le scienze non è statica ma si evolve, e certi problemi la cui soluzione non era neppure concepibile un tempo è stata trovata secoli dopo, come ad esempio il famoso paradosso di Achille e la tartaruga. --IndyJr (Tracce nella foresta) 18:34, 9 lug 2022 (CEST)[rispondi]

Diciannovesimo problema

[modifica wikitesto]

Nella pagina è scritto che è stato risolto da De Giorgi nel '57, tuttavia nella pagina dedicata a Renato Caccioppoli, è scritto che ne ha dato risposta nel '35. Una delle due affermazioni è errata o parzialmente errata. Questo commento senza la firma utente è stato inserito da HappyCactus (discussioni · contributi) 12:05, 22 apr 2010 (CEST).[rispondi]

La frase è giusta, la soluzione del problema fu data da De Giorgi e da Nash in modo indipendente nel 1957. Non so cosa ci fosse scritto nel 2010 nella voce di Caccioppoli, ma quel che c'è scritto ora non significa che Caccioppoli trovò la soluzione al problema di Hilbert nel 1935, ma che "dimostrò l'analiticità per le soluzioni delle equazioni ellittiche di classe C2, dando così lo spunto per la risoluzione del diciannovesimo problema di Hilbert, uno dei 23 problemi matematici stabiliti dal matematico tedesco. La dimostrazione fu poi data, nel 1957, dal matematico italiano Ennio De Giorgi...", quindi pose le basi per la soluzione trovata dal collega anni dopo. --IndyJr (Tracce nella foresta) 18:52, 9 lug 2022 (CEST)[rispondi]

Problema 8 - Ipotesi di Riemann

[modifica wikitesto]

Senza astio verso il simpatico Louis de Branges, la sua ultima proposta di dimostrazione (perchè ne ha presentate molte in passato, tutte rivelatesi errate) risale al 2004 e c'è consenso unanime tra i matematici che il suo approccio non possa funzionare. Dunque toglierei il riferimento a lui nella voce dell'Ipotesi di Riemann. Saluti. Questo commento senza la firma utente è stato inserito da 122.165.65.169 (discussioni · contributi) 21:07, 30 gen 2011 (CET).[rispondi]

Il fatto è che è un matematico famoso, che ha già risolto un'altra famosa congettura, quindi un paio di righe per il suo tentativo di dimostrazione, che ha avuto l'attenzione dei matematici di tutto il mondo, è almeno doveroso, anche se finora non si è rivelato giusto. --IndyJr (Tracce nella foresta) 19:06, 9 lug 2022 (CEST)[rispondi]
[@ IndyJr] Mi vedo d'accordo con l'ip. Tentativi di dimostrazione ce ne sono stati diversi, anche di matematici più famosi e con approcci che, seppur finora infruttuosi, sono tuttora studiati. Il fatto che in una riga sull'ipotesi di Riemann si citi Di Branges mi sembra chiaramente un ingiusto rilievo. Per fare un paragone, la lunga voce di en.wiki su RH dedica solo 2.5 righe a quell'approccio, mentre il (premiato) articolo di Conrey neanche lo nomina (mentre cita un tentativo di Rademacher).--Sandro_bt (scrivimi) 16:27, 12 ago 2022 (CEST)[rispondi]
@Sandrobt Allora si potrebbero aggiungere proporzionalmente all'importanza i tentativi di dimostrazione più significativi. --IndyJr (Tracce nella foresta) 22:47, 12 ago 2022 (CEST)[rispondi]
[@ IndyJr]. Mah, io sarei per togliere proprio: per gli altri problemi non si citano tentativi falliti e nel caso in questione le varie fonti (come appunto l'articolo di Conrey) danno poca o nulla attenzione a questi tentativi.--Sandro_bt (scrivimi) 14:39, 19 ago 2022 (CEST)[rispondi]
@Sandrobt Ma sì, ho tolto la riga in questa voce, il tentativo di De Branges è già spiegato nella voce specifica, che al limite sarebbe da ampliare per evidenziare gli altri tentativi più rilevanti, come si fa solitamente in questo genere di voci per fare il punto della situazione nel cercare la soluzione del problema. --IndyJr (Tracce nella foresta) 15:23, 19 ago 2022 (CEST)[rispondi]
@Sandrobt L'ip che ha scritto nel 2011 lo voleva togliere anche dalla voce dell'ipotesi di Riemann, però io sarei più favorevole all'ampliamento perché altrimenti sembrerebbe che da quando fu formulata questa ipotesi ad oggi nessuno si sia occupato di trovare la soluzione per un problema così importante (se non addirittura il più importante problema irrisolto della matematica), tuttavia per evitare l'ingiusto rilievo al solo de Branges o si amplia o si toglie de Brange, ma se si toglie poi alla fine nessuno si occuperà più di questa voce (almeno fino a che qualcuno non troverà la soluzione dell'ipotesi di Riemann), per cui visto che sei sicuramente più sintetico di me non potresti nella voce ipotesi di Riemann fare un sunto essenziale dei tentativi di dimostrazione di poche righe? --IndyJr (Tracce nella foresta) 15:41, 19 ago 2022 (CEST)[rispondi]
[@ IndyJr] Sì, concordo che sull'altra voce ci può stare. Quella voce sarebbe abbondantemente da riscrivere, appena ho tempo per mettermici seriamente provo a sistemarla un po'.--Sandro_bt (scrivimi) 13:59, 22 ago 2022 (CEST)[rispondi]

Collegamenti esterni modificati

[modifica wikitesto]

Gentili utenti,

ho appena modificato 1 collegamento esterno sulla pagina Problemi di Hilbert. Per cortesia controllate la mia modifica. Se avete qualche domanda o se fosse necessario far sì che il bot ignori i link o l'intera pagina, date un'occhiata a queste FAQ. Ho effettuato le seguenti modifiche:

Fate riferimento alle FAQ per informazioni su come correggere gli errori del bot.

Saluti.—InternetArchiveBot (Segnala un errore) 14:59, 20 apr 2020 (CEST)[rispondi]

1° problema di Hilbert

[modifica wikitesto]

Qualcuno aggiunge le motivazioni che portano alcuni matematici a considerare il 1° problema di Hilbert risolto ed altri irrisolto secondo gli assiomi ZFC, per completezza ed aiutarmi a scrivere eventualmente un articolo scientifico al riguardo? --Imprenditore5 (msg) 12:19, 10 feb 2024 (CET)[rispondi]

La cosa è un po' diversa. L'ipotesi del continuo è indipendente da ZFC, e su questo tutti i matematici sono d'accordo; il "parzialmente accettato" è legato al fatto che ci sono alcuni logici matematici che pensano si possa trovare un insieme diverso (e più "naturale") di assiomi dove l'ipotesi del continuo è decidibile, tipicamente dimostrando che in quel sistema la cardinalità dei reali è ℵ2. Vedi per esempio qui. Poi non so chi frequenti queste lande e abbia la competenza per scrivere un articolo scientifico :-) -- .mau. ✉ 19:15, 11 feb 2024 (CET)[rispondi]