Radice dell'unità
In matematica, le radici -esime dell'unità sono tutti i numeri (reali o complessi) la cui -esima potenza è pari a , ovvero le soluzioni dell'equazione:
Le radici
[modifica | modifica wikitesto]Nel campo complesso per ogni intero positivo esistono esattamente radici -esime dell'unità e sono nella forma
dove l'ultima uguaglianza viene dalla formula di Eulero, con intero, .
Esse si dispongono nel piano complesso lungo la circonferenza unitaria, ai vertici di un poligono regolare con lati che ha un vertice in .
Tra queste radici le uniche reali sono r0 = 1 e, se (cioè è pari) rk = -1.
Per ogni l'insieme delle radici -esime dell'unità, con l'operazione data dalla moltiplicazione usuale sui complessi, forma un gruppo ciclico.
Si dicono radici primitive -esime dell'unità tutte quelle radici che generano il gruppo delle radici -esime dell'unità. È facile provare che le radici primitive -esime dell'unità sono quelle radici -esime dell'unità tali che:
- .
Il numero di radici primitive ennesime dell'unità è pari al numero di interi minori di e coprimi con . Qui è la funzione φ di Eulero.
Radici di un numero complesso qualsiasi
[modifica | modifica wikitesto]Le radici -esime di un numero complesso possono essere descritte in modo più agevole rappresentando il numero complesso in forma polare
Se è diverso da zero, le radici -esime di sono effettivamente radici distinte. Una di queste è la seguente
Infatti
Più in generale, le radici di si ottengono moltiplicando con le radici dell'unità. Quindi
Queste radici formano sempre i vertici di un poligono regolare di lati centrato nell'origine. Il raggio del poligono è .
Esempi
[modifica | modifica wikitesto]Le radici quarte di un numero reale positivo sono ottenute moltiplicando la radice quarta reale di per le quattro radici dell'unità. Le quattro radici quarte di sono quindi:
Le radici -esime di -1 formano nel piano complesso un poligono regolare di lati, centrato nell'origine: lo si può ottenere ruotando di in senso antiorario il poligono formato dalle radici -esime dell'unità. Il numero è vertice del poligono quando è dispari.
Alcune radici di 1
[modifica | modifica wikitesto]Voci correlate
[modifica | modifica wikitesto]- Polinomio ciclotomico
- Equazione ciclotomica
- Uno
- Unità immaginaria
- Radicale (matematica)
- Radice (matematica)
- Numero complesso
Altri progetti
[modifica | modifica wikitesto]- Wikimedia Commons contiene immagini o altri file su radice dell'unità
Collegamenti esterni
[modifica | modifica wikitesto]- (EN) Eric W. Weisstein, Radice dell'unità / Radice dell'unità (altra versione), su MathWorld, Wolfram Research.