Indice
Antiprisma
Antiprisma | |
---|---|
Tipo | Poliedro uniforme |
Forma facce | 2 n-goni, 2n triangoli |
Nº facce | 2 + 2n |
Nº spigoli | 4n |
Nº vertici | 2n |
Valenze vertici | 4 |
Duale | Trapezoedro |
Proprietà | convesso |
Sviluppo piano | |
Un antiprisma è un poliedro le cui facce sono due poligoni regolari con n lati della stessa grandezza, connesse da un ciclo di triangoli isosceli o equilateri. Ciascun triangolo di ciascun ciclo connette due vertici di una base e un vertice dell'altra.
Gli antiprismi sono simili ai prismi; si differenziano da questi per avere le basi ruotate una rispetto all'altra di un angolo equivalente alla metà di quello formato dai raggi che congiungono il baricentro del poligono a due vertici adiacenti, e connesse da triangoli invece che da rettangoli.
Un antiprisma è un poliedro uniforme e convesso. In particolare, le sue facce sono poligoni regolari e le cuspidi ai vertici sono tutte identiche.
Esiste un antiprisma per ogni . Per , l'antiprisma è un ottaedro: questo è anche uniforme sugli spigoli e sulle facce, oltre che sui vertici, ed è quindi un solido platonico.
I poliedri duali degli antiprismi sono i trapezoedri. Il primo nel Rinascimento a individuarli, denominarli e discuterli fu Johannes Kepler.
L'altezza di un antiprisma retto, convesso e regolare è fissata una volta determinato il valore del lato del poligono di base. Nel caso in cui l'antiprisma sia retto e convesso, ma irregolare, la sua altezza - insieme al lato del poligono di base - sarà fondamentale per derivarne le altre caratteristiche.
Coordinate canoniche
[modifica | modifica wikitesto]Le coordinate canoniche di un antiprisma con basi n-gonali sono
con
Bibliografia
[modifica | modifica wikitesto]- H. M. Cundy & A. P. Rollett, I modelli matematici, Milano, Feltrinelli, 1974.
- Maria Dedò, Forme, simmetria e topologia, Bologna, Decibel & Zanichelli, 1999, ISBN 88-08-09615-7.
Altri progetti
[modifica | modifica wikitesto]- Wikimedia Commons contiene immagini o altri file sull'antiprisma
Collegamenti esterni
[modifica | modifica wikitesto]- Antiprisma, su Treccani.it – Enciclopedie on line, Istituto dell'Enciclopedia Italiana.
- Antiprisma, in Dizionario delle scienze fisiche, Istituto dell'Enciclopedia Italiana, 1996.
- Antiprisma, su Vocabolario Treccani, Istituto dell'Enciclopedia Italiana.
- antiprisma, su sapere.it, De Agostini.
- antiprisma, in Enciclopedia della Matematica, Istituto dell'Enciclopedia Italiana, 2013.
- (EN) Eric W. Weisstein, Antiprism, su MathWorld, Wolfram Research.
- (EN) Paper models of prisms and antiprisms, su software3d.com.
- (EN) The Uniform Polyhedra, su mathconsult.ch.
- (EN) Virtual Reality Polyhedra The Encyclopedia of Polyhedra