Technopedia Center
PMB University Brochure
Faculty of Engineering and Computer Science
S1 Informatics S1 Information Systems S1 Information Technology S1 Computer Engineering S1 Electrical Engineering S1 Civil Engineering

faculty of Economics and Business
S1 Management S1 Accountancy

Faculty of Letters and Educational Sciences
S1 English literature S1 English language education S1 Mathematics education S1 Sports Education
teknopedia

teknopedia

teknopedia

teknopedia

teknopedia

teknopedia
teknopedia
teknopedia
teknopedia
teknopedia
teknopedia
  • Registerasi
  • Brosur UTI
  • Kip Scholarship Information
  • Performance
  1. Weltenzyklopädie
  2. Utente:Renamed user gxQITgCwp5/sandbox2 - Teknopedia
Utente:Renamed user gxQITgCwp5/sandbox2 - Teknopedia

Pagina originale Conversione della tabella presente nella pagina in sezioni

Linearità

[modifica | modifica wikitesto]

Per la proprietà di linearità la trasformata di a 1 x 1 [ n ] + a 2 x 2 [ n ] {\displaystyle a_{1}x_{1}[n]+a_{2}x_{2}[n]} {\displaystyle a_{1}x_{1}[n]+a_{2}x_{2}[n]} è a 1 X 1 ( z ) + a 2 X 2 ( z ) {\displaystyle a_{1}X_{1}(z)+a_{2}X_{2}(z)} {\displaystyle a_{1}X_{1}(z)+a_{2}X_{2}(z)}.

Infatti:

X ( z ) = ∑ n = − ∞ ∞ ( a 1 x 1 ( n ) + a 2 x 2 ( n ) ) z − n = a 1 ∑ n = − ∞ ∞ ( x 1 ( n ) ) z − n + a 2 ∑ n = − ∞ ∞ ( x 2 ( n ) ) z − n = a 1 X 1 ( z ) + a 2 X 2 ( z ) {\displaystyle {\begin{aligned}X(z)&=\sum _{n=-\infty }^{\infty }(a_{1}x_{1}(n)+a_{2}x_{2}(n))z^{-n}\\&=a_{1}\sum _{n=-\infty }^{\infty }(x_{1}(n))z^{-n}+a_{2}\sum _{n=-\infty }^{\infty }(x_{2}(n))z^{-n}\\&=a_{1}X_{1}(z)+a_{2}X_{2}(z)\end{aligned}}} {\displaystyle {\begin{aligned}X(z)&=\sum _{n=-\infty }^{\infty }(a_{1}x_{1}(n)+a_{2}x_{2}(n))z^{-n}\\&=a_{1}\sum _{n=-\infty }^{\infty }(x_{1}(n))z^{-n}+a_{2}\sum _{n=-\infty }^{\infty }(x_{2}(n))z^{-n}\\&=a_{1}X_{1}(z)+a_{2}X_{2}(z)\end{aligned}}}

La regione di convergenza è almeno la regione di intersezione di ROC1 e ROC2

Espansione temporale

[modifica | modifica wikitesto]

Per la proprietà di espansione temporale si ha che la trasformata di


  
    
      
        
          x
          
            (
            k
            )
          
        
        [
        n
        ]
        =
        
          
            {
            
              
                
                  x
                  [
                  r
                  ]
                  ,
                
                
                  n
                  =
                  r
                  k
                
              
              
                
                  0
                  ,
                
                
                  n
                  ≠
                  r
                  k
                
              
            
            
          
        
      
    
    {\displaystyle x_{(k)}[n]={\begin{cases}x[r],&n=rk\\0,&n\not =rk\end{cases}}}
  
{\displaystyle x_{(k)}[n]={\begin{cases}x[r],&n=rk\\0,&n\not =rk\end{cases}}}


con r {\displaystyle r} {\displaystyle r} intero è:

X ( z k ) {\displaystyle X(z^{k})} {\displaystyle X(z^{k})}

Infatti:

X k ( z ) = ∑ n = − ∞ ∞ x k ( n ) z − n = = ∑ r = − ∞ ∞ x ( r ) z − r k = = ∑ r = − ∞ ∞ x ( r ) ( z k ) − r = = X ( z k ) {\displaystyle {\begin{aligned}X_{k}(z)&=\sum _{n=-\infty }^{\infty }x_{k}(n)z^{-n}=\\&=\sum _{r=-\infty }^{\infty }x(r)z^{-rk}=\\&=\sum _{r=-\infty }^{\infty }x(r)(z^{k})^{-r}=\\&=X(z^{k})\end{aligned}}} {\displaystyle {\begin{aligned}X_{k}(z)&=\sum _{n=-\infty }^{\infty }x_{k}(n)z^{-n}=\\&=\sum _{r=-\infty }^{\infty }x(r)z^{-rk}=\\&=\sum _{r=-\infty }^{\infty }x(r)(z^{k})^{-r}=\\&=X(z^{k})\end{aligned}}}

La regione di convergenza è: r 1 / k {\displaystyle r^{1/k}} {\displaystyle r^{1/k}}.

Traslazione temporale

[modifica | modifica wikitesto]

x [ n − k ] {\displaystyle x[n-k]} {\displaystyle x[n-k]} z − k X ( z ) {\displaystyle z^{-k}X(z)} {\displaystyle z^{-k}X(z)} Z { x [ n − k ] } = ∑ n = 0 ∞ x [ n − k ] z − n {\displaystyle Z\{x[n-k]\}=\sum _{n=0}^{\infty }x[n-k]z^{-n}} {\displaystyle Z\{x[n-k]\}=\sum _{n=0}^{\infty }x[n-k]z^{-n}}
Posto j = n − k {\displaystyle j=n-k} {\displaystyle j=n-k} si ha:
∑ n = 0 ∞ x [ n − k ] z − n = ∑ j = − k ∞ x [ j ] z − ( j + k ) = ∑ j = − k ∞ x [ j ] z − j z − k {\displaystyle \sum _{n=0}^{\infty }x[n-k]z^{-n}=\sum _{j=-k}^{\infty }x[j]z^{-(j+k)}=\sum _{j=-k}^{\infty }x[j]z^{-j}z^{-k}} {\displaystyle \sum _{n=0}^{\infty }x[n-k]z^{-n}=\sum _{j=-k}^{\infty }x[j]z^{-(j+k)}=\sum _{j=-k}^{\infty }x[j]z^{-j}z^{-k}} = z − k ∑ j = − k ∞ x [ j ] z − j {\displaystyle =z^{-k}\sum _{j=-k}^{\infty }x[j]z^{-j}} {\displaystyle =z^{-k}\sum _{j=-k}^{\infty }x[j]z^{-j}} = z − k ∑ j = 0 ∞ x [ j ] z − j {\displaystyle =z^{-k}\sum _{j=0}^{\infty }x[j]z^{-j}} {\displaystyle =z^{-k}\sum _{j=0}^{\infty }x[j]z^{-j}}
essendo x [ β ] = 0 {\displaystyle x[\beta ]=0} {\displaystyle x[\beta ]=0} se β < 0 {\displaystyle \beta <0} {\displaystyle \beta <0}. Da cui:
z − k ∑ j = 0 ∞ x [ j ] z − j = z − k X ( z ) {\displaystyle z^{-k}\sum _{j=0}^{\infty }x[j]z^{-j}=z^{-k}X(z)} {\displaystyle z^{-k}\sum _{j=0}^{\infty }x[j]z^{-j}=z^{-k}X(z)} ROC, eccetto z = 0   {\displaystyle z=0\ } {\displaystyle z=0\ } se k > 0 {\displaystyle k>0\,} {\displaystyle k>0\,} e z = ∞ {\displaystyle z=\infty } {\displaystyle z=\infty } se k < 0   {\displaystyle k<0\ } {\displaystyle k<0\ }

Scalatura nel dominio z

[modifica | modifica wikitesto]

a n x [ n ]   {\displaystyle a^{n}x[n]\ } {\displaystyle a^{n}x[n]\ } X ( a − 1 z )   {\displaystyle X(a^{-1}z)\ } {\displaystyle X(a^{-1}z)\ } Z { a n x [ n ] } = ∑ n = − ∞ ∞ a n x ( n ) z − n = ∑ n = − ∞ ∞ x ( n ) ( a − 1 z ) − n = X ( a − 1 z ) {\displaystyle {\begin{array}{lcl}Z\{a^{n}x[n]\}=&\\\sum _{n=-\infty }^{\infty }a^{n}x(n)z^{-n}&\\=\sum _{n=-\infty }^{\infty }x(n)(a^{-1}z)^{-n}&\\=X(a^{-1}z)&\\\end{array}}} {\displaystyle {\begin{array}{lcl}Z\{a^{n}x[n]\}=&\\\sum _{n=-\infty }^{\infty }a^{n}x(n)z^{-n}&\\=\sum _{n=-\infty }^{\infty }x(n)(a^{-1}z)^{-n}&\\=X(a^{-1}z)&\\\end{array}}} | a | r 2 < | z | < | a | r 1   {\displaystyle |a|r_{2}<|z|<|a|r_{1}\ } {\displaystyle |a|r_{2}<|z|<|a|r_{1}\ }

Inversione temporale

[modifica | modifica wikitesto]

x [ − n ]   {\displaystyle x[-n]\ } {\displaystyle x[-n]\ } X ( z − 1 )   {\displaystyle X(z^{-1})\ } {\displaystyle X(z^{-1})\ } Z { x ( − n ) } = ∑ n = − ∞ ∞ x ( − n ) z − n   = ∑ m = − ∞ ∞ x ( m ) z m   = ∑ m = − ∞ ∞ x ( m ) ( z − 1 ) − m   = X ( z − 1 ) {\displaystyle {\begin{array}{lcl}{\mathcal {Z}}\{x(-n)\}=&\\\sum _{n=-\infty }^{\infty }x(-n)z^{-n}\ &\\=\sum _{m=-\infty }^{\infty }x(m)z^{m}\ &\\=\sum _{m=-\infty }^{\infty }x(m){(z^{-1})}^{-m}\ &\\=X(z^{-1})&\\\end{array}}} {\displaystyle {\begin{array}{lcl}{\mathcal {Z}}\{x(-n)\}=&\\\sum _{n=-\infty }^{\infty }x(-n)z^{-n}\ &\\=\sum _{m=-\infty }^{\infty }x(m)z^{m}\ &\\=\sum _{m=-\infty }^{\infty }x(m){(z^{-1})}^{-m}\ &\\=X(z^{-1})&\\\end{array}}} 1 r 1 < | z | < 1 r 2   {\displaystyle {\frac {1}{r_{1}}}<|z|<{\frac {1}{r_{2}}}\ } {\displaystyle {\frac {1}{r_{1}}}<|z|<{\frac {1}{r_{2}}}\ }

Coniugazione complessa

[modifica | modifica wikitesto]

x ∗ [ n ]   {\displaystyle x^{*}[n]\ } {\displaystyle x^{*}[n]\ } X ∗ ( z ∗ )   {\displaystyle X^{*}(z^{*})\ } {\displaystyle X^{*}(z^{*})\ } Z { x ∗ ( n ) } = ∑ n = − ∞ ∞ x ∗ ( n ) z − n   = ∑ n = − ∞ ∞ [ x ( n ) ( z ∗ ) − n ] ∗   = [ ∑ n = − ∞ ∞ x ( n ) ( z ∗ ) − n   ] ∗ = X ∗ ( z ∗ ) {\displaystyle {\begin{array}{lcl}Z\{x^{*}(n)\}=&\\\sum _{n=-\infty }^{\infty }x^{*}(n)z^{-n}\ &\\=\sum _{n=-\infty }^{\infty }[x(n)(z^{*})^{-n}]^{*}\ &\\=[\sum _{n=-\infty }^{\infty }x(n)(z^{*})^{-n}\ ]^{*}&\\=X^{*}(z^{*})&\\\end{array}}} {\displaystyle {\begin{array}{lcl}Z\{x^{*}(n)\}=&\\\sum _{n=-\infty }^{\infty }x^{*}(n)z^{-n}\ &\\=\sum _{n=-\infty }^{\infty }[x(n)(z^{*})^{-n}]^{*}\ &\\=[\sum _{n=-\infty }^{\infty }x(n)(z^{*})^{-n}\ ]^{*}&\\=X^{*}(z^{*})&\\\end{array}}} ROC

Parte reale

[modifica | modifica wikitesto]

Re ⁡ { x [ n ] }   {\displaystyle \operatorname {Re} \{x[n]\}\ } {\displaystyle \operatorname {Re} \{x[n]\}\ } 1 2 [ X ( z ) + X ∗ ( z ∗ ) ] {\displaystyle {\frac {1}{2}}\left[X(z)+X^{*}(z^{*})\right]} {\displaystyle {\frac {1}{2}}\left[X(z)+X^{*}(z^{*})\right]} ROC

Parte immaginaria

[modifica | modifica wikitesto]

Im ⁡ { x [ n ] }   {\displaystyle \operatorname {Im} \{x[n]\}\ } {\displaystyle \operatorname {Im} \{x[n]\}\ } 1 2 j [ X ( z ) − X ∗ ( z ∗ ) ] {\displaystyle {\frac {1}{2j}}\left[X(z)-X^{*}(z^{*})\right]} {\displaystyle {\frac {1}{2j}}\left[X(z)-X^{*}(z^{*})\right]} ROC

Differenziazione

[modifica | modifica wikitesto]

n x [ n ]   {\displaystyle nx[n]\ } {\displaystyle nx[n]\ } − z d X ( z ) d z {\displaystyle -z{\frac {dX(z)}{dz}}} {\displaystyle -z{\frac {dX(z)}{dz}}} Z { n x ( n ) } = ∑ n = − ∞ ∞ n x ( n ) z − n   = z ∑ n = − ∞ ∞ n x ( n ) z − n − 1   = − z ∑ n = − ∞ ∞ x ( n ) ( − n z − n − 1 )   = − z ∑ n = − ∞ ∞ x ( n ) d d z ( z − n )   = − z d X ( z ) d z {\displaystyle {\begin{array}{lcl}Z\{nx(n)\}=&\\\sum _{n=-\infty }^{\infty }nx(n)z^{-n}\ &\\=z\sum _{n=-\infty }^{\infty }nx(n)z^{-n-1}\ &\\=-z\sum _{n=-\infty }^{\infty }x(n)(-nz^{-n-1})\ &\\=-z\sum _{n=-\infty }^{\infty }x(n){\frac {d}{dz}}(z^{-n})\ &\\=-z{\frac {dX(z)}{dz}}&\\\end{array}}} {\displaystyle {\begin{array}{lcl}Z\{nx(n)\}=&\\\sum _{n=-\infty }^{\infty }nx(n)z^{-n}\ &\\=z\sum _{n=-\infty }^{\infty }nx(n)z^{-n-1}\ &\\=-z\sum _{n=-\infty }^{\infty }x(n)(-nz^{-n-1})\ &\\=-z\sum _{n=-\infty }^{\infty }x(n){\frac {d}{dz}}(z^{-n})\ &\\=-z{\frac {dX(z)}{dz}}&\\\end{array}}}

ROC

Convoluzione

[modifica | modifica wikitesto]

x 1 [ n ] ∗ x 2 [ n ]   {\displaystyle x_{1}[n]*x_{2}[n]\ } {\displaystyle x_{1}[n]*x_{2}[n]\ } X 1 ( z ) X 2 ( z )   {\displaystyle X_{1}(z)X_{2}(z)\ } {\displaystyle X_{1}(z)X_{2}(z)\ } Z { x 1 ( n ) ∗ x 2 ( n ) } = Z { ∑ l = − ∞ ∞ x 1 ( l ) x 2 ( n − l ) }   = ∑ n = − ∞ ∞ [ ∑ l = − ∞ ∞ x 1 ( l ) x 2 ( n − l ) ] z − n   = ∑ l = − ∞ ∞ x 1 ( l ) ∑ n = − ∞ ∞ x 2 ( n − l ) z − n ]   = [ ∑ l = − ∞ ∞ x 1 ( l ) z − l ] [ ∑ n = − ∞ ∞ x 2 ( n ) z − n ]   = X 1 ( z ) X 2 ( z ) {\displaystyle {\begin{array}{lcl}{\mathcal {Z}}\{x_{1}(n)*x_{2}(n)\}=&\\{\mathcal {Z}}\{\sum _{l=-\infty }^{\infty }x_{1}(l)x_{2}(n-l)\}\ &\\=\sum _{n=-\infty }^{\infty }[\sum _{l=-\infty }^{\infty }x_{1}(l)x_{2}(n-l)]z^{-n}\ &\\=\sum _{l=-\infty }^{\infty }x_{1}(l)\sum _{n=-\infty }^{\infty }x_{2}(n-l)z^{-n}]\ &\\=[\sum _{l=-\infty }^{\infty }x_{1}(l)z^{-l}][\sum _{n=-\infty }^{\infty }x_{2}(n)z^{-n}]\ &\\=X_{1}(z)X_{2}(z)&\\\end{array}}} {\displaystyle {\begin{array}{lcl}{\mathcal {Z}}\{x_{1}(n)*x_{2}(n)\}=&\\{\mathcal {Z}}\{\sum _{l=-\infty }^{\infty }x_{1}(l)x_{2}(n-l)\}\ &\\=\sum _{n=-\infty }^{\infty }[\sum _{l=-\infty }^{\infty }x_{1}(l)x_{2}(n-l)]z^{-n}\ &\\=\sum _{l=-\infty }^{\infty }x_{1}(l)\sum _{n=-\infty }^{\infty }x_{2}(n-l)z^{-n}]\ &\\=[\sum _{l=-\infty }^{\infty }x_{1}(l)z^{-l}][\sum _{n=-\infty }^{\infty }x_{2}(n)z^{-n}]\ &\\=X_{1}(z)X_{2}(z)&\\\end{array}}} Almeno la regione di intersezione di ROC1 e ROC2

Cross-correlazione

[modifica | modifica wikitesto]

r x 1 , x 2 = x 1 ∗ [ − n ] ∗ x 2 [ n ]   {\displaystyle r_{x_{1},x_{2}}=x_{1}^{*}[-n]*x_{2}[n]\ } {\displaystyle r_{x_{1},x_{2}}=x_{1}^{*}[-n]*x_{2}[n]\ } R x 1 , x 2 ( z ) = X 1 ∗ ( 1 / z ∗ ) X 2 ( z )   {\displaystyle R_{x_{1},x_{2}}(z)=X_{1}^{*}(1/z^{*})X_{2}(z)\ } {\displaystyle R_{x_{1},x_{2}}(z)=X_{1}^{*}(1/z^{*})X_{2}(z)\ } Almeno la regione di intersezione di ROC of X 1 ( 1 / z ∗ ) {\displaystyle X_{1}(1/z^{*})} {\displaystyle X_{1}(1/z^{*})} e X 2 ( z ) {\displaystyle X_{2}(z)} {\displaystyle X_{2}(z)}

Prima differenza

[modifica | modifica wikitesto]

x [ n ] − x [ n − 1 ]   {\displaystyle x[n]-x[n-1]\ } {\displaystyle x[n]-x[n-1]\ } ( 1 − z − 1 ) X ( z )   {\displaystyle (1-z^{-1})X(z)\ } {\displaystyle (1-z^{-1})X(z)\ } Almeno la regione di intersezione di ROC of X1(z) e | z | > 0 {\displaystyle |z|>0} {\displaystyle |z|>0}

Accumulazione

[modifica | modifica wikitesto]

∑ k = − ∞ n x [ k ]   {\displaystyle \sum _{k=-\infty }^{n}x[k]\ } {\displaystyle \sum _{k=-\infty }^{n}x[k]\ }

1 1 − z − 1 X ( z ) {\displaystyle {\frac {1}{1-z^{-1}}}X(z)} {\displaystyle {\frac {1}{1-z^{-1}}}X(z)}

∑ n = − ∞ ∞ ∑ k = − ∞ n x [ k ] ⋅ z − n = s u m n = − ∞ ∞ ( x [ n ] + x [ n − 1 ] + x [ n − 2 ] ⋯ x [ − ∞ ] ) z − n = X [ z ] ( 1 + z − 1 + z − 2 + z − 3 ⋯ ) = X [ z ] ∑ j = 0 ∞ z − j = X [ z ] 1 1 − z − 1 {\displaystyle {\begin{array}{lcl}\sum _{n=-\infty }^{\infty }\sum _{k=-\infty }^{n}x[k]\cdot z^{-n}\\=sum_{n=-\infty }^{\infty }(x[n]+x[n-1]+\\x[n-2]\cdots x[-\infty ])z^{-n}\\=X[z](1+z^{-1}+z^{-2}+z^{-3}\cdots )\\=X[z]\sum _{j=0}^{\infty }z^{-j}\\=X[z]{\frac {1}{1-z^{-1}}}\end{array}}} {\displaystyle {\begin{array}{lcl}\sum _{n=-\infty }^{\infty }\sum _{k=-\infty }^{n}x[k]\cdot z^{-n}\\=sum_{n=-\infty }^{\infty }(x[n]+x[n-1]+\\x[n-2]\cdots x[-\infty ])z^{-n}\\=X[z](1+z^{-1}+z^{-2}+z^{-3}\cdots )\\=X[z]\sum _{j=0}^{\infty }z^{-j}\\=X[z]{\frac {1}{1-z^{-1}}}\end{array}}}


Moltiplicazione

[modifica | modifica wikitesto]

  
    
      
        
          x
          
            1
          
        
        [
        n
        ]
        
          x
          
            2
          
        
        [
        n
        ]
         
      
    
    {\displaystyle x_{1}[n]x_{2}[n]\ }
  
{\displaystyle x_{1}[n]x_{2}[n]\ }

1 j 2 π ∮ C X 1 ( v ) X 2 ( z v ) v − 1 d v   {\displaystyle {\frac {1}{j2\pi }}\oint _{C}X_{1}(v)X_{2}({\frac {z}{v}})v^{-1}\mathrm {d} v\ } {\displaystyle {\frac {1}{j2\pi }}\oint _{C}X_{1}(v)X_{2}({\frac {z}{v}})v^{-1}\mathrm {d} v\ }

Almeno 
  
    
      
        
          r
          
            1
            l
          
        
        
          r
          
            2
            l
          
        
        <
        
          |
        
        z
        
          |
        
        <
        
          r
          
            1
            u
          
        
        
          r
          
            2
            u
          
        
         
      
    
    {\displaystyle r_{1l}r_{2l}<|z|<r_{1u}r_{2u}\ }
  
{\displaystyle r_{1l}r_{2l}<|z|<r_{1u}r_{2u}\ } |-

Teorema di Parseval

[modifica | modifica wikitesto]

∑ n = − ∞ ∞ x 1 [ n ] x 2 ∗ [ n ]   {\displaystyle \sum _{n=-\infty }^{\infty }x_{1}[n]x_{2}^{*}[n]\ } {\displaystyle \sum _{n=-\infty }^{\infty }x_{1}[n]x_{2}^{*}[n]\ }

1 j 2 π ∮ C X 1 ( v ) X 2 ∗ ( 1 v ∗ ) v − 1 d v   {\displaystyle {\frac {1}{j2\pi }}\oint _{C}X_{1}(v)X_{2}^{*}({\frac {1}{v^{*}}})v^{-1}\mathrm {d} v\ } {\displaystyle {\frac {1}{j2\pi }}\oint _{C}X_{1}(v)X_{2}^{*}({\frac {1}{v^{*}}})v^{-1}\mathrm {d} v\ }

Estratto da "https://it.wikipedia.org/w/index.php?title=Utente:Renamed_user_gxQITgCwp5/sandbox2&oldid=81510428"

  • Indonesia
  • English
  • Français
  • 日本語
  • Deutsch
  • Italiano
  • Español
  • Русский
  • فارسی
  • Polski
  • 中文
  • Nederlands
  • Português
  • العربية
Pusat Layanan

UNIVERSITAS TEKNOKRAT INDONESIA | ASEAN's Best Private University
Jl. ZA. Pagar Alam No.9 -11, Labuhan Ratu, Kec. Kedaton, Kota Bandar Lampung, Lampung 35132
Phone: (0721) 702022