In fisica matematica, un integrale di Grassman (o un integrale di Berezin) è un modo per definire l'integrazione per funzioni di variabili di Grassmann. Esso non è un integrale nel senso di Lebesgue: si chiama integrazione, perché ha proprietà analoghe e dato che è usato in fisica come una somma "sul cammino" di fermioni, come un'estensione dell'integrazione sul cammino. La tecnica è stata inventata dal fisico David John Candlin nel 1956[1], ma a volte prende il nome dal matematico russo Felix Berezin, che l'ha incluso in un trattato nel suo libro di testo[2].
Definizione
[modifica | modifica wikitesto]L'integrale di Berezin è definito come un funzionale lineare, ovvero[3]:
dove noi definiamo:
- ;
- ;
così che:
Queste proprietà definiscono l'integrale in modo univoco.
Questa è la funzione più generale, perché ogni funzione omogenea di una variabile Grassmann è costante o è lineare.
Numero di Grassmann
[modifica | modifica wikitesto]In Fisica matematica, un numero di Grassmann (chiamato numero anticommutante) è una quantità che anticommuta con gli altri numeri di Grassmann , ma commuta con i numeri ordinari ,
In particolare, il quadrato di un numero di Grassmann è nullo:
L'algebra generata da un insieme di numeri di Grassmann è nota come algebra di Grassmann (o algebra esterna). L'algebra di Grassmann generata da n numeri di Grassmann linearmente indipendenti ha dimensione 2n. Questi enti prendono il nome da Hermann Grassmann. Ad esempio se n=3, abbiamo gli elementi linearmente indipendenti:
che insieme all'unità 1, formano uno spazio 23=8-dimensionale.
L'algebra di Grassman è l'esempio prototipo di algebre supercommutative. Queste sono algebre con una decomposizione in variabili pari e dispari che soddisfa una versione gradata della commutatività (in particolare, elementi dispari anticommutano).
Rappresentazione matriciale
[modifica | modifica wikitesto]I numeri di Grassmann possono sempre venire rappresentati da matrici. Consideriamo, ad esempio, l'algebra di Grassmann generata da due numeri di Grassmann e . Questi numeri possono essere rappresentati da matrici 4×4 :
In generale, una algebra di Grassmann con n generatori può venire rappresentata da 2n × 2n matrici quadrate. Fisicamente queste matrici possono venir pensate come operatori di creazione agenti su uno spazio di Hilbert di n fermioni nella base del numero di occupazione. Dal momento che il numero di occupazione per ciascun fermione è o 0 o 1, ci sono 2n stati possibili. Matematicamente, queste matrici possono essere interpretate come operatori lineari corrispondenti alla moltiplicazione sinistra dell'algebra esterna sull'algebra di Grassmann stessa.
Applicazioni
[modifica | modifica wikitesto]I numeri di Grassman sono anche importanti nella definizione di supervarietà (o superspazio), dove vengono utilizzate come "coordinate anticommutanti", oltre a definire gli integrali sulle variabili di Grassman, noti come integrali di Berezin.
Note
[modifica | modifica wikitesto]- ^ D.J. Candlin, On Sums over Trajactories for Systems With Fermi Statistics, in Nuovo Cimento, vol. 4, 1956, p. 224, DOI:10.1007/BF02745446.
- ^ A. Berezin, The Method of Second Quantization, Academic Press, (1966)
- ^ A. Berezin, The Method of Second Quantization, New York, Academic Press, (1966)
Bibliografia
[modifica | modifica wikitesto]- Theodore Voronov: Geometric integration theory on Supermanifolds, Harwood Academic Publisher, ISBN 3-7186-5199-8
- D.J. Candlin, On Sums over Trajactories for Systems With Fermi Statistics, in Nuovo Cimento, vol. 4, 1956, p. 224, DOI:10.1007/BF02745446.
- A. Berezin, The Method of Second Quantization, Academic Press, (1966)
Voci correlate
[modifica | modifica wikitesto]Collegamenti esterni
[modifica | modifica wikitesto]- (EN) D.J. Candlin, On Sums over Trajactories for Systems With Fermi Statistics, in Nuovo Cimento, vol. 4, 1956, p. 224, DOI:10.1007/BF02745446.
- (EN) Introducing supersymmetry[collegamento interrotto], M. F. Sohnius, 1985.