In elettronica, l'effetto Miller, teorizzato da John Milton Miller, è un fenomeno che caratterizza i sistemi retroazionati nei quali l'impedenza posta nella retroazione sia data da un condensatore. Tale fenomeno getterà le basi per il teorema di Miller, scoperto postumo.
L'effetto Miller descrive il fatto che il valore di capacità di un condensatore collegato tra l'ingresso e l'uscita di un amplificatore viene visto dalla porta di ingresso come se fosse moltiplicato per un fattore , dove è il guadagno in tensione dell'amplificatore ed il condensatore fosse collegato in parallelo alla porta di ingresso stessa. Se si guarda dalla porta di uscita dell'amplificatore invece, il valore del condensatore viene visto come se fosse moltiplicato per un fattore ed il condensatore fosse collegato in parallelo alla porta di uscita stessa.
Siccome, dal punto di vista intuitivo, il guadagno rappresenta una moltiplicazione di tensione tra punti distinti, qualsiasi condensatore posto tra tali punti si caricherà e scaricherà con una corrente anch'essa moltiplicata per .
Derivazione
[modifica | modifica wikitesto]Consideriamo un amplificatore con un guadagno in tensione , si avrà . Si assuma che l'amplificatore abbia un'alta impedenza d'ingresso. Un'impedenza aggiunta tra l'ingresso e l'uscita dell'amplificatore subirà l'effetto Miller. Si consideri un amplificatore di tensione ideale di guadagno con un'impedenza connessa tra i nodi di input e output. La tensione di uscita è quindi e la corrente d'ingresso è
La corrente che attraversa Z è molto intensa, dato il guadagno idealmente infinito dell'amplificatore, e l'impedenza si comporta come se avesse un valore diverso da quello nominale. L'impedenza d'ingresso del circuito è
Se Z rappresenta un condensatore si ha
e l'impedenza d'ingresso diviene
dove
In questo modo si definisce la capacità di Miller CM come la capacità del condensatore C moltiplicata per un fattore , che è la capacità vista in ingresso.[1].
Transistore ad emettitore comune con capacità di Miller
[modifica | modifica wikitesto]Una delle applicazioni più usate dell'effetto Miller in elettronica è il transistor ad emettitore comune, dotato di un notevole guadagno. Applicando una retroazione contenente la capacità di Miller al transistore, che si supponga caratterizzato da una resistenza di ingresso Rin = rπ + βRe, un guadagno A = -Rc/(1/gm + Re) e una resistenza in uscita Rout = Re, la costante di tempo del circuito τp = 1/ωp, dove ωp è il polo, risulta essere
mentre , dove è lo zero, risulta essere
dove e .
La funzione di trasferimento diventa
Ponendo che il transistore abbia una resistenza di carico , essendo il guadagno pari a
si evince che il guadagno di questo dispositivo, dipendendo dalla sola resistenza , può essere molto elevato.
Note
[modifica | modifica wikitesto]- ^ R.R. Spencer and M.S. Ghausi, Introduction to electronic circuit design., Upper Saddle River NJ, Prentice Hall/Pearson Education, Inc., 2003, p. 533, ISBN 0-201-36183-3.