Funzione gradino

Da Teknopedia, l'enciclopedia libera.
Vai alla navigazione Vai alla ricerca
Niente fonti!
Questa voce o sezione sull'argomento matematica non cita le fonti necessarie o quelle presenti sono insufficienti.

Puoi migliorare questa voce aggiungendo citazioni da fonti attendibili secondo le linee guida sull'uso delle fonti. Segui i suggerimenti del progetto di riferimento.

In matematica, una funzione reale si dice funzione a gradino o funzione a gradinata o funzione a scala se è costante a tratti.

Ad esempio, la funzione seguente è a gradino:

In generale, detta una partizione - finita o infinita a seconda della cardinalità di - del dominio, allora è detta a gradino se esistono tali che:

dove è la funzione indicatrice dell'insieme , cioè

Una funzione a gradino non è altro che una combinazione lineare di funzioni indicatrici.

Una funzione a gradino non è generalmente continua, come è facile notare, ma è comunque continua quasi ovunque (possiede un numero finito o numerabile di discontinuità) e dunque è integrabile secondo Riemann; il suo integrale è

,

cioè, come è immaginabile, l'area sottesa è la somma delle aree dei singoli rettangolini di base e altezza .

Dall'integrale di particolari funzioni a gradino Riemann partirà poi per la costruzione del suo integrale.

Voci correlate

[modifica | modifica wikitesto]

Altri progetti

[modifica | modifica wikitesto]

Collegamenti esterni

[modifica | modifica wikitesto]
  Portale Matematica: accedi alle voci di Teknopedia che trattano di matematica